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BACKGROUND: Increasing evidence links higher particulate matter (PM) air pollution exposure to late-life cognitive impairment. However, few studies
have considered associations between direct estimates of long-term past exposures and brain MRI findings indicative of neurodegeneration or cerebro-
vascular disease.
OBJECTIVE: Our objective was to quantify the association between brain MRI findings and PM exposures approximately 5 to 20 y prior to MRI in the
Atherosclerosis Risk in Communities (ARIC) study.
METHODS: ARIC is based in four U.S. sites: Washington County, Maryland; Minneapolis suburbs, Minnesota; Forsyth County, North Carolina; and
Jackson, Mississippi. A subset of ARIC participants underwent 3T brain MRI in 2011–2013 (n=1,753). We estimated mean exposures to PM with
an aerodynamic diameter less than 10 or 2:5 lm (PM10 and PM2:5) in 1990–1998, 1999–2007, and 1990–2007 at the residential addresses of eligible
participants with MRI data. We estimated site-specific associations between PM and brain MRI findings and used random-effect, inverse variance–
weighted meta-analysis to combine them.

RESULTS: In pooled analyses, higher mean PM2:5 and PM10 exposure in all time periods were associated with smaller deep-gray brain volumes, but
not other MRI markers. Higher PM2:5 exposures were consistently associated with smaller total and regional brain volumes in Minnesota, but not
elsewhere.
CONCLUSIONS: Long-term past PM exposure in was not associated with markers of cerebrovascular disease. Higher long-term past PM exposures
were associated with smaller deep-gray volumes overall, and higher PM2:5 exposures were associated with smaller brain volumes in the Minnesota
site. Further work is needed to understand the sources of heterogeneity across sites. https://doi.org/10.1289/EHP2152

Introduction
Common environmental pollutants may promote cognitive
decline, cognitive impairment, and dementia. In particular,
recent epidemiologic studies have reported that higher expo-
sure to particulate air pollution is associated with increased
risk of cognitive decline, cognitive impairment, and dementia
(Power et al. 2016a; Tzivian et al. 2016; Xu et al. 2016).
Although this body of work is highly suggestive, work linking
air pollution to MRI markers of brain injury may provide
mechanistic insight and would allay concerns about residual

confounding by sociodemographic and socioeconomic charac-
teristics that are common to studies of air pollution and cogni-
tion (Casanova et al. 2016; Chen et al. 2015; Wilker et al.
2015; Wilker et al. 2016). However, relatively little work has
been done to examine the link between particulate air pollu-
tion and available markers of brain injury, and prior studies
exclusively report on associations between recent air pollution
exposures and markers of brain injury (Chen et al. 2015;
Power et al. 2016a; Wilker et al. 2015). However, current
brain health is a result of cumulative causes of brain injury
that likely accumulate over decades, including aggregating
proteins, ischemic injury, inflammation and oxidative stress,
or exposure to toxins. As such, it is reasonable to expect that
air pollution exposures over the prior years to decades may
significantly contribute to current brain health. In addition,
prior studies on air pollution and markers of brain injury are
limited by lack of understanding of the selection process by
which persons were selected for neuroimaging, which may
lead to bias (Weuve et al. 2015).

To address these limitations, we conducted a study to quantify
the association of long-term past exposure to particulate matter air
pollution with MRI markers of neurodegeneration and subclinical
cerebrovascular disease in older adults from the Atherosclerosis
Risk in Communities Neurocognitive Study (ARIC-NCS). We
hypothesized that long-term past exposure to particulate matter
(PM) air pollution, specifically PM <2:5 lm in aerodynamic di-
ameter (PM2:5), would be associated with smaller total brain
volumes, as atrophy is an etiologically nonspecific indicator of
cumulative brain damage, and increased risk of subclinical
cerebrovascular disease. We also considered associations with
regional brain volumes, given focal atrophy may suggest that
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PM exposures contribute to the pathogenesis of specific neuro-
degenerative processes.

Methods

Study Population
In 1987–1989 (Visit 1), the ARIC Study recruited 15,792 partici-
pants from four U.S. communities: Minneapolis, Minnesota sub-
urbs; Jackson, Mississippi; Washington County, Maryland; and
Forsyth County, North Carolina. Participants have since been
invited to complete four additional study visits: Visit 2, 1990–
1992; Visit 3, 1993–1995; Visit 4, 1996–1998; and Visit 5,
2011–2013. A sample of participants who attended Visit 5 were
invited to undergo brain MRI as part of the ARIC-NCS
(Knopman et al. 2015). Briefly, at each site, excluding those with
contraindications to MRI, all persons who had any indication of
cognitive impairment at Visit 5, all persons who had previously
completed brain MRI as part of an ARIC substudy, and a strati-
fied random sample of the remaining participants (stratified by
age) were invited to complete a brain MRI. Of those who com-
pleted brain MRI (n=1,978), we excluded those with a history of
surgery or radiation to the head, multiple sclerosis, or brain tumor
(n=15), all nonblack or nonwhite participants from any study
site and all black individuals from Minnesota or Maryland
(n=15), those with an implausible estimated intracranial volume
(eTIV) (n=2), and those for whom we were unable to estimate
historical air pollution exposures (n=193). This study was
approved by the institutional review boards of all participating
institutions. All subjects provided written informed consent to
participate at each study visit.

Particulate Matter Air Pollution Exposures
Based on each participant’s residential address, which was
updated at each ARIC study visit, we estimated monthly expo-
sures to PM2:5 and PM10 (PM with an aerodynamic diameter
<10 lm) using validated spatiotemporal statistical models
(Paciorek et al. 2009; Yanosky et al. 2014; Yanosky et al. 2008;
Yanosky et al. 2009). These models used PM monitoring, and ge-
ographic and meteorological covariates, in conjunction with spa-
tial smoothing, to describe monthly PM2:5 and PM10 levels with
high spatial resolution. Given national monitoring data were
available for PM2:5 only for 1999 onward, separate spatiotempo-
ral models for PM2:5 were fit for the 1988–1998 and 1999–2007
time periods. The PM2:5 model for the earlier time period (1988–
1998) relied on PM10 model predictions and had a simpler space–
time structure. The PM2:5 models for both time periods had high
predictive accuracy [cross-validation (CV) R2 = 0:77 for both
1988–1998 and 1999–2007]. The predictive ability of the PM10
model was slightly lower (CVR2 = 0:58 for both 1988–1998 and
1999–2007). Models generally performed well in both urban and
rural areas and across seasons, though predictive performance
varied somewhat by region [CVR2 = 0:81, 0.81, 0.83, 0.72, 0.69,
0.50, and 0.60 for the Northeast, Midwest, Southeast, Southcentral,
Southwest, Northwest, and Central Plains regions, respectively, for
PM2:5 from 1999–2007 (Yanosky et al. 2014)]. As our study sites
are located in the Northeast, Midwest, and Southeast, predictive per-
formance is expected to be similar across study sites.

Input data were available from 1988 onward; we generated
PM estimates at the residential address of each participant from
1990–2007, given lower confidence in PM estimates in the first
few years covered by the model and our goal to quantify associa-
tions with long-term past exposures. We did not use moving aver-
ages to avoid issues of bias due to secular trends in air pollution

coupled with differences in brain health for those who underwent
MRI early or late in the study period.

Specifically, among those participants with complete air pol-
lution exposure estimates, we created three exposure summaries
for use in our analyses. First, we considered average exposures
from 1990–2007, which represents the period approximately 22
to 5 y prior to neuroimaging. We hypothesized that these long-
term cumulative exposures would be most relevant to current
brain health. Structural brain changes detectable on MRI consid-
ered here are expected to represent the culmination of years of
brain injury; thus, long-term cumulative average exposure would
be expected to be relevant to the severity of brain injury detecta-
ble on MRI. In addition, we also separately considered average
exposures from 1990–1998 (approximately 14 to 22 y prior to
neuroimaging) and from 1999–2007 (approximately 14 to 5 y
prior to neuroimaging), to explore whether changes to exposure
model before and after 1999 impacted our findings. However, we
recognize that, if observed, differences in association across aver-
aging periods could also be attributable to true differences in the
impact of exposure based on the timing of exposure relative to
outcome assessment.

Neuroimaging Measures
At each study site, participants completed 3T MRI scans accord-
ing to a standardized protocol. Pulse sequences included a sagittal
T1-weighted 3-D volumetric magnetization-prepared gradient
echo (MPRAGE) pulse sequence, axial T2 fluid-attenuated inver-
sion recovery and axial T2* weighted gradient echo. The ARIC
MRI reading center (Mayo Clinic, Minnesota) analyzed all images.

Regional gray-matter volumes were quantified with FreeSurfer
(version 5.1; Laboratory for Computational Neuroimaging at the
Athinoula A. Martinos Center for Biomedical Imaging), and total
brain and intracranial volumes were estimated using in-house
algorithms (Jack et al. 2014). In our analyses, we consider gray-
matter volumes of the total brain, the four lobes (frontal, parietal,
temporal, occipital), the hippocampus, the deep-gray structures
(thalamus, caudate, putamen, and pallidum), and total volume of
multiple gray-matter regions known to atrophy preferentially in
Alzheimer’s disease (parahippocampal, entorhinal, and inferior pa-
rietal lobules, hippocampus, precuneus, and cuneus), which we
refer to as the AD signature region (Dickerson et al. 2011).

White matter hyperintensity (WMH) volumes were measured
using an in-house algorithm. (Raz et al. 2013) As WMH volumes
were not normally distributed, we created a dichotomous severe
WMH variable defined as present if WMH volume is >5% of total
white matter volume. Brain infarcts and microbleeds were identi-
fied, counted, and measured by a trained imaging technician and
confirmed by a radiologist (Knopman et al. 2015). Lacunar infarcts
were subsequently identified based on location and size (3–15 mm
in diameter) (Wardlaw et al. 2013). Microbleeds were subsequently
classified as lobar or subcortical based on location. In our analyses,
we characterized infarcts, lacunar infarcts, microbleeds, lobar
microbleeds, and subcortical microbleeds as present or absent.

Covariates
We used data collected at Visits 1 and 4 to define participant age,
gender (male/female), education (≤high school, >high school),
body mass index (BMI; normal/overweight/obese), and smoking
status (current/former/never). BMI was defined as measured
weight (kg) divided by the square of measured height (m), while
all other covariates were defined via self-report. We also consid-
ered two measures of area-level socioeconomic status (SES), the
proportion of the residential census tract population below the
U.S. poverty line, and a summary measure of neighborhood
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wealth/income, education, and occupation combining U.S. Census
tract–level characteristics denoted the Neighborhood SES score
(Diez Roux et al. 2001). Each measure of SES was categorized into
three levels (bottom quintile, middle three quintiles, top quintile)
using center-specific cutoffs.

Statistical Analysis
We initially conducted all analyses stratified by study site. Brain
volumes were z-transformed prior to use in analyses based on the
mean and standard deviation (SD) of volumes in those individu-
als who met eligibility criteria for inclusion in our study. We
used weighted linear or logistic regression to quantify the site-
specific association between a 1-lg=m3-higher PM exposure
measure and each of our neuroimaging features. The weights
accounted for the stratified random sampling used to select partic-
ipants from each site from ARIC Visit 5 into the ARIC MRI sam-
ple; thus, our site-specific analyses can be interpreted as the
association that would be observed in the full Visit 5 ARIC sam-
ple at each site. All models were adjusted for age, gender, race,
education, and eTIV. Associations with 1990–1998 and 1990–
2007 exposure summaries were adjusted for covariate values at
the time of Visit 1 (1987–1989), while associations with 1999–
2007 exposure summaries were adjusted for covariate values at
the time of Visit 4 (1996–1998). To provide a summary estimate
combining data from all four sites, we combined site-specific
estimates using random effects meta-analysis (DerSimonian and
Laird 1986). Use of random effects meta-analysis was chosen
given potential heterogeneity in association due to differences
in PM composition or other factors across study sites. It also
allowed for formal evaluation of the evidence for heterogeneity
across estimates using the I2 test. Moreover, this method has
the benefit of allowing us to derive a summary measure of asso-
ciation despite evidence of intractable confounding by site;

exposure and confounder distributions across sites did not
always overlap.

In sensitivity analyses, we reestimated our site-specific and
combined estimates of association a) additionally adjusting for
BMI, smoking status, and our two measures of area-level SES; b)
excluding persons with documented stroke before MRI; c)
restricting to persons who did not move during follow-up; d) con-
sidering white participants only (there were too few black partici-
pants in the North Carolina site to allow a site-specific estimate
among blacks or a pooled estimate combining the North Carolina
and Mississippi site estimates); e) incorporating inverse probabil-
ity of attrition weighting (Hernán et al. 2000; Power et al. 2016b)
to account for potentially informative attrition from Visit 1 to
Visit 5; f) excluding potential outliers in our exposure estimates
through application of the generalized extreme studentized deriv-
ative test (Rosner 1983); g) using log-transformed WMH vol-
umes as an outcome in linear regression models; and h) in
models omitting weighting. We also reestimated our site-specific
estimates of association using a 1-SD unit increase in site-specific
exposure as the exposure contrast. All analyses were completed
using SAS (version 9.4; SAS Institute Inc.) or Stata (version 14.0;
StataCorp).

Results
In total, 1,753 persons met our eligibility criteria and were
included in the analyses. At the time of MRI, participants were
on average 76 y old, 40% were male, and 45% had greater than a
high school education. Table 1 provides demographic and clinical
characteristics of the study participants, as well as information on
our MRI outcomes by study site. Overall, the Minnesota site was
the most affluent of the four sites, followed in order by North
Carolina, Maryland, and Mississippi.

Table 1. Selected characteristics for eligible ARIC-NCS participants by study site.

Characteristic
MN (n=419)

% or mean±SD
MD (n=443)

% or mean±SD
NC (n=446)

% or mean±SD
MS (n=441)

% or mean±SD p-Valuea

Age at baseline, y 53± 5 53± 5 54± 5 52± 5 0.0004
Age at MRI, y 76± 5 77± 5 77± 5 75± 5
Male 48 37 43 33 <0:0001
Black 0 0 6 100 <0:0001
>HS education 55 30 53 45 <0:0001
Smoking at baseline <0:0001
Current 15 13 17 19
Former 40 31 32 26
Never 45 56 52 55

BMI at baseline, kg=m2 27± 4 27± 5 25± 4 29± 5 <0:0001
Neighborhood SES score at baseline 4:4± 3:1 −0:4± 2:8 −3:4± 5:1 −4:6± 4:6 <0:0001
Proportion of residential census track below U.S. poverty line at baseline 0:05± 0:03 0:08± 0:05 0:07± 0:06 0:31± 0:14 <0:0001
Estimated intracranial volume, cm3 1436± 154 1378± 150 1406± 159 1308± 134 <0:0001
Total brain volume, cm3 1048± 109 1009± 104 1022± 108 967± 98 0.05
Frontal lobe volume, cm3 155± 15 149± 15 153± 17 143± 14 <0:0001
Parietal lobe volume, cm3 111± 12 106± 12 107± 12 99± 11 <0:0001
Occipital lobe volume, cm3 43± 5 41± 5 41± 5 37± 5 <0:0001
Temporal lobe volume, cm3 105± 12 101± 11 102± 12 98± 11 <0:0001
Deep-gray volume, cm3 30± 3 30± 3 30± 3 29± 3 0.004
Hippocampal volume, cm3 7:0± 0:9 6:7± 0:9 6:9± 1:0 6:8± 1:0 0.002
AD signature region volume, cm3 62± 7 59± 7 59± 7 56± 6 <0:0001
Severe WMHb 22 26 25 28 <0:0001
Infarcts present 24 25 27 27 0.01
Lacunes present 17 18 18 19 0.07
Microbleeds present 24 20 27 28 <0:0001
Subcortical microbleeds present 20 17 22 23 0.0005
Lobar microbleeds present 10 7 10 9 0.0003

Note: ARIC-NCS, Atherosclerosis Risk in Communities Neurocognitive Study; BMI, body mass index; HS, high school; MD, Maryland; MN, Minnesota; MS, Mississippi; NC, North
Carolina; SD, standard deviation; SES, socioeconomic status; WMH, white matter hyperintensities.
aChi-square of F-test p-value for comparison of characteristics by site, after weighting; p-values for brain volumes are additionally adjusted for estimated intracranial volume.
bSevere WMH defined as WMH volume >5% of white matter volume.
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Of the four sites, Minnesota and Mississippi had the lowest
PM exposures, while Maryland and North Carolina had the high-
est (Table 2). Variation in exposure to PM10 was generally larger
than variation in exposure to PM2:5. Site-specific coefficients of
variation for our exposure estimates ranged from 0.03 to
0:11 lg=m3 for PM10 and 0.02 to 0:10 lg=m3 for PM2:5.

As there was evidence of moderate to high heterogeneity
(I2> 40%) across sites when considering analyses of PM2:5 and
brain volumes, we discuss both the site-specific and pooled anal-
yses (Table 3). In the Minnesota site, higher PM2:5 exposures
were generally associated with smaller total and regional brain
volumes, with slightly stronger associations observed when con-
sidering the 1990–1998 exposure period compared to the 1999–
2007 exposure period. This pattern was not observed in the other
three sites. Results from the Maryland and North Carolina sites
were consistently null. In the Mississippi site, there was some
evidence to support a protective association between higher PM
exposures and larger AD signature region, temporal lobe, and
occipital lobe volumes, regardless of exposure period; associa-
tions with other regions were typically null. When site-specific
associations were pooled via meta-analysis, the resulting effect
estimates were generally null. However, consistently adverse
associations between PM2:5 exposure from 1999–2007 and fron-
tal lobe volumes across sites resulted in a small, marginally sig-
nificant pooled association [beta: −0:02 SD units per 1-lg=m3

higher exposure; 95% confidence interval (CI): −0:04, 0.00]
Similarly, consistently adverse associations between higher
PM2:5 exposures in all three time periods and smaller deep-gray
volumes across the Minnesota, Maryland, and North Carolina
sites resulted in small, marginally significant pooled associations
(e.g., for mean PM2:5 from 1990–2007, beta: −0:03 SD units per
1-lg=m3 higher exposure; 95% CI: −0:08, 0.00). The overall pat-
tern of site-specific and combined results was similar across our
sensitivity analyses, including analyses implementing inverse
probability weighting (Tables S1 and S2) and those omitting use
of sampling weights (Table S3).

Similarly, there was some evidence to suggest heterogeneity
of association across sites when considering analyses of PM10

and brain volumes (Table 4). Site-specific analyses suggested
adverse associations between higher mean PM10 over 1999–
2007 or 1990–2007 and smaller total brain volumes, occipital
lobe volumes, and deep-gray volumes in Minnesota (Table 4).
As with the PM2:5 analyses, we also observed protective asso-
ciations between higher long-term PM10 exposure and larger
occipital lobe, temporal lobe, and AD signature region vol-
umes in Mississippi. As with PM2:5, there was little evidence
of an association between long-term PM10 exposure and total
or regional brain volumes in pooled analyses, with the excep-
tion of an adverse association between higher mean PM10 in
all three time periods and smaller deep-gray-region volumes
(e.g., the PM10 1990–2007 time period, beta: −0:02; 95% CI:
−0:04, 0.00). As above, the overall pattern of site-specific and
combined results was similar across sensitivity analyses,
including analyses implementing inverse probability weight-
ing (Tables S4 and S5) and those omitting use of sampling
weights (Table S6).

When considering the relation between PM2:5 or PM10 and the
presence of MRI markers of cerebrovascular disease, there was lit-
tle statistical evidence of heterogeneity of association across the
four sites; thus, we focused on the analyses pooling estimates from
all four sites via meta-analysis. Overall, there was little conclusive
evidence to support an association between higher exposure to
PM2:5 or PM10 in any time period and the presence of MRI
markers of cerebrovascular disease in pooled analyses combining
all four sites (Tables S7 and S8). However, the odds ratios (ORs)
for the pooled associations between a 1-lg=m3-higher mean
PM2:5 exposure and either lacunes or subcortical microbleeds
were consistently in the range of 1.04 to 1.10, although these asso-
ciations were not statistically significant. Similarly, although the
ORs for the pooled associations between a 1-lg=m3-higher mean
PM10 exposure and microbleeds were consistently in the range of
1.04 to 1.05; these associations were also not statistically signifi-
cant. Results from our sensitivity analyses were broadly consistent
with our primary analysis findings, including analyses implement-
ing inverse probability weighting or omitting use of sampling
weights (Tables S9 to S14).

Table 2. Distribution of exposure by site and exposure averaging time period for eligible ARIC-NCS participants.

Exposure Site Time period Mean SD Minimum 25th Percentile 75th Percentile Maximum

PM2:5 MN 1990–1998 9.4 0.4 7.7 9.2 9.6 11.5
PM2:5 MN 1999–2007 13.1 0.7 9.3 12.9 13.4 16.7
PM2:5 MN 1990–2007 11.2 0.5 9.0 11.1 11.5 13.9
PM2:5 MD 1990–1998 15.1 1.0 11.8 14.6 15.9 18.2
PM2:5 MD 1999–2007 19.1 1.8 9.9 18.5 20.1 22.9
PM2:5 MD 1990–2007 17.1 1.3 11.4 16.5 17.9 20.5
PM2:5 NC 1990–1998 15.7 0.5 13.8 15.4 16.0 17.7
PM2:5 NC 1999–2007 11.4 0.7 8.7 11.1 11.7 18.9
PM2:5 NC 1990–2007 13.6 0.5 11.6 13.4 13.8 16.7
PM2:5 MS 1990–1998 12.4 0.3 11.6 12.2 12.5 13.3
PM2:5 MS 1999–2007 10.2 0.3 8.7 10.1 10.4 11.3
PM2:5 MS 1990–2007 11.3 0.2 10.4 11.2 11.4 12.3
PM10 MN 1990–1998 17.0 1.2 12.1 16.6 17.6 20.0
PM10 MN 1999–2007 16.6 1.8 10.5 16.2 17.5 21.6
PM10 MN 1990–2007 16.8 1.4 11.5 16.3 17.5 20.6
PM10 MD 1990–1998 23.3 2.3 16.2 22.0 25.1 30.2
PM10 MD 1999–2007 19.4 2.1 13.5 18.0 20.9 25.5
PM10 MD 1990–2007 21.4 2.1 15.5 20.1 22.9 27.8
PM10 NC 1990–1998 21.9 0.9 18.6 21.3 22.3 24.8
PM10 NC 1999–2007 18.2 0.8 14.4 17.7 18.5 20.8
PM10 NC 1990–2007 20.0 0.8 16.9 19.5 20.4 22.7
PM10 MS 1990–1998 18.7 0.5 17.1 18.3 18.9 20.0
PM10 MS 1999–2007 17.4 0.5 15.9 17.1 17.6 18.9
PM10 MS 1990–2007 18.0 0.5 16.6 17.7 18.3 19.4

Note: ARIC-NCS, Atherosclerosis Risk in Communities Neurocognitive Study; MD, Maryland; MN, Minnesota; MS, Mississippi; NC, North Carolina; PM, particulate matter; SD,
standard deviation.
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Discussion
In pooled analyses combining all four sites, higher mean PM2:5
and PM10 exposures in the 5 to 20 y prior were associated with
smaller deep-gray regional brain volumes and higher PM2:5 expo-
sures 5–14 y prior were marginally associated with smaller fron-
tal lobe volumes. We found little evidence in support of an
association between higher long-term exposure to PM2:5 or PM10
over our three time periods of exposure and other brain volume
measures or markers of cerebrovascular and small vessel disease
in pooled analyses. However, there was evidence of significant
heterogeneity in associations between PM and brain volumes by
study site. When considering site-specific associations, we con-
sistently observed smaller total and regional brain volumes with
greater long-term exposure to PM2:5 in the Minnesota site, but
not the other three sites. Throughout, where there was evidence
of an association between PM exposure and brain volumes, the
magnitude of these associations was similar to that seen in prior
analyses in this sample, considering the association between mid-
life blood pressure and brain volumes. (Power et al. 2016b) For
reference, the −0:05 to −0:1 SD unit effect size observed in the
Minnesota site can be interpreted as loss of approximately 0.5%
to 1% of regional brain volume.

Strengths of this study include the relatively large number of
participants with MRI, our ability to use weighting to account for
selection into the MRI subcohort in primary analyses and attrition
from the baseline ARIC visit in sensitivity analyses, and consid-
eration of long-term, cumulative past exposures. Our coefficients
of variation for air pollution exposure estimates are similar to
those calculated from other studies based in geographically con-
strained locations (albeit typically using shorter averaging peri-
ods) (Power et al. 2016a), suggesting that the variation in
exposure at our four sites is similar to that found in other loca-
tions. However, the relatively small number of persons in each
center limits our power to detect small true effects, systematically
evaluate the potential for nonlinear associations, or assess effect
modification by age or other personal factors. In addition, mild
brain atrophy may have several root causes. Heterogeneity in the
causes of neurodegeneration in our sample may contribute to the
muted dose–response, especially if only a subset of the potential
causes of neurodegeneration, including both neurodegenerative
diseases and other sources of brain injury, are related to air pollu-
tion exposure. Similarly, our findings do not preclude the possi-
bility of neurotoxic effects on the brain that are not captured by
the considered MRI markers of brain injury; studies considering
alternate markers (e.g., cortical thickness) may be useful. We did
not consider associations with more recent exposures, or with cu-
mulative exposures that include recent exposures. As such, we
cannot comment on the relative importance of recent versus past
exposures or whether recent exposures are an acceptable surro-
gate for long-term cumulative exposures. As with many recent
studies of the health effects of air pollution, we used modeled ex-
posure measures using residential address rather than personal
exposure metrics, and we were unable to address the issue of
indoor air pollution. Moreover, we cannot discount the possibility
that regional variation in predictive accuracy of our model may
complicate or invalidate comparison of site-specific effect esti-
mates. Finally, we cannot exclude the possibility of chance
findings.

There are a small number of reports considering the association
between PM exposures and MRI-based measurements of brain
structure or subclinical cerebrovascular disease. Collectively,
including the current study, this body of literature fails to identify
a consistent pattern of associations, as results are frequently null,
with the few positive findings differing across studies. In a study
nested within the Women’s Health Initiative Memory Study

(WHIMS), PM2:5 air pollution exposures in 1999–2006 were not
associated with gray-matter brain volumes assessed in 2005–2006
(Chen et al. 2015). However, higher PM2:5 exposures were associ-
ated with smaller, normal-appearing white matter brain volumes,
with magnitudes of association of roughly 0.01-SD units volume
per interquartile range increase in exposure. Additional analyses in
WHIMS using a voxel-based approach found PM2:5 exposures in
the 3 y prior to MRI were associated with areas of smaller cortical
gray-matter and subcortical white-matter volumes (Casanova et al.
2016). Notably, the authors also report significant clusters of asso-
ciation whereby higher PM2:5 was associated with larger deep
gray–matter nuclei volumes in WHIMS participants (Casanova
et al. 2016), opposite to our own observations of associations
between higher PM and smaller regional gray-matter volumes in
ARIC participants. In participants from the Framingham Offspring
Study who lived in the New England region, higher past-year
PM2:5 exposure was associated with smaller total cerebral brain
volumes and greater risk of covert brain infarcts, but not with
WMH volumes, age-adjusted extensive WMH volumes, or hippo-
campal volumes (Wilker et al. 2015). Finally, in a study of partici-
pants from the Massachusetts Alzheimer’s Disease Research
Center Longitudinal Cohort, there was no association between
higher PM2:5 exposures in 2003 and either brain parenchymal frac-
tion (a measure of brain atrophy) or the presence of microbleeds at
an MRI between 2004 and 2010, while there was a protective
association between higher PM2:5 exposure and smaller WMH
volumes (Wilker et al. 2016).

Interestingly, studies of the relationship between air pollution
and cognitive or related outcomes (e.g., MRI markers or neuropa-
thology) that consider geographically localized samples are more
likely to report null associations. In contrast, studies considering
participants spread over larger geographic regions have been
more likely to report adverse associations (Power et al. 2016a).
We suggest several potential explanations. First, studies in geo-
graphically constrained locations are typically small, and the
range of exposures tends to be smaller. Thus, such studies are
likely underpowered to detect small effects. A meta-analytic
approach, such as demonstrated here, for combining information
about multiple small, geographically constrained studies in differ-
ent locations can overcome this limitation without inducing con-
cerns about strong or intractable confounding that may arise in
pooled analyses. Second, studies with wider geographic distribu-
tion may be more susceptible to confounding by characteristics
that vary regionally. As we have previously demonstrated else-
where (Power et al. 2016a), it appears unlikely that residual con-
founding may fully account for the adverse findings in more
geographically dispersed settings, given the characteristics such a
confounder would have to have in order to fully account for pre-
viously observed associations. However, this possibility cannot
be fully discounted, especially given evidence in this study that
exposure and confounder distributions across sites do not always
overlap. Thus, residual confounding may still lead to a biased
estimate of the true association in more expansive settings when
spatial confounding is strong and meta-analysis of site-specific
associations is not used. Finally, it is possible that a focus on
quantifying exposure based on particulate mass is contributing to
this heterogeneity of findings. If specific PM species or other
physical characteristics such as surface area confer the relevant
toxic effect, geographically constrained studies may be studying
the impact of less toxic exposures, while geographically broad
studies may be capturing mixtures of these effects due to their
larger study area. Our finding of heterogeneity in association
across sites would support this hypothesis, and the finding of
adverse associations in Minnesota but not the other three sites
may be attributable not to chance, but to the relative toxicity of
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exposures. Future work will be needed to understand the drivers
of the divide in findings between these two study types in order
to establish a causal effect of air pollution on late-life brain
health.

Another potential explanation for the finding of adverse asso-
ciations between PM2:5 and brain volumes in the Minnesota site,
but not the others, lies in the potential nonlinearity of the associa-
tion. Minnesota had the lowest air pollution levels of the four
sites, and previous studies have suggested a nonlinear relation-
ship between PM and both total cerebral brain volume (Wilker
et al. 2015) and cognitive function (Ailshire and Crimmins 2014;
Oudin et al. 2015; Power et al. 2011), whereby the strongest asso-
ciations were observed at the lowest levels of exposure. Given
relatively small samples per site, we were not able to assess non-
linearity of exposure within site, but hope others may be able to
follow up on this possibility in the future.

Conclusions
In conclusion, we found no associations between cumulative past
PM exposure and MRI-based markers of cerebrovascular disease.
Combining data across sites, higher past PM exposures were
associated with smaller deep-gray volumes across sites, and
higher PM2:5 in 1999–2007 was marginally associated with
smaller frontal lobe volumes. When considering individual sites,
higher PM2:5 exposures were associated with smaller brain vol-
umes in the Minnesota site. Further work will be needed to repli-
cate these findings and understand the sources of heterogeneity
across sites, and will require consideration of a broader number
of sites.
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